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ABSTRACT
A numerical procedure that allows for the evaluation of the scaling law between
radius of gyration and molecular weight, <sz>i/2 = Q Mcil, of ideally monodisperse

fractions of any polymer is proposed. The method is similar to that previously
used to determine viscometric constants and chromatographic calibration functions
and is based on the combination of experimental results obtained by Static Light
Scattering and Size Exclusion Chromatography on polydisperse samples. The method
is used to study poly[bis(2-naphthoxyphosphazene)] in THF solution at 25°C  for
which the relationship <sz>i/2 = 0.557 M?'Zg is obtained. The comparison between
the dimensions computed with this equation and those obtained by viscometric
measurements, performed under the same experimental conditions, suggest the

formation of intermolecular aggregates in the solutions of this polymer.

INTRODUCTION

It is a well known fact (1) that Static Light Scattering (LS) measurements provide
weight-averaged molecular weights Mw and z-averaged values of mean squared radius
of gyration <sz>z. Thus, when experimental values of <sz>2 and Mw are used to
determine scaling laws (2) such as §SZ>1/2 = Q Mq, the difference in the kind of
average used for both magnitudes could somehow mask the actual variation of <sz>
with M. This effect is negligible when very well fractionated samples having
polydispersity ratios r = Mw/Mn ~ 1 are used for the experimental measurements,
but it becomes rather important when the fractionation of the sample is not so
efficient, and even more, when the polydispersity of the measured fractions is
very different. This is exactly the situation in the case of poly(organo-
phosphazenes), that can be represented as [N-P(XX’)-], where X and X’ indicate two
organic residues attached to every skeletal phosphorus atom. Indeed, serious
experimental problems in the fractionation of this kind of polymers have been

reported (3,4), and even very carefully fractionated samples (5,6) have
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polydispersity ratios ranging from 1.2 to 4.
Some semiempirical procedures (1,7} have been devised for transforming <52>Z into
weight average <sz>w. For instance, the relationship <'52>W/<sz>Z = (h+1)/(h+2)
with (1/h) = r-1 is frequently used to compute the ratio <s >w/Mw, specially when
these results have to be compared with values obtained by some other experimental
techniques. An alternative procedure consists in evaluating Mz and use the ratio
<52> /M.

zZ 7z
During the last years, we have been employing a numerical procedure designed to
minimize the effect of polydispersity (3,5,8,9). The method uses the experimental
results of Size Exclusion Chromatography (SEC), viscometry (VIS) and LS
measurements performed on actual polydisperse samples and allows the evaluation of
true values of viscometric parameters and SEC calibration functions for ideally
monodisperse fractions (10-13). The procedure is extended in the present paper to
the calculation of the parameters governing the relationship between radius of
gyration and molecular weight and applied to the study of poly[bis(2-naphthoxy
phosphazene)] (PBNP) (X = X’ = 2-naphthoxy in the structure of polyphosphazenes
given above) (5). Some conclusions about the structure of the polymer solution are
then obtained through a comparison between the molecular dimensions calculated

with this method and those previously obtained by viscometry.

NUMERICAL METHOD

Let us represent by Ri = <s?)1/2 the root of the mean square radius of gyration of
a polymer chain having molecular weight Mi averaged over all the conformations
available to this particular chain. We further assume that Ri follows a variation

with Mi that can be represented by a scaling law (2) such as:
= q
Ri =0Q Mi (1)

When the radius of gyration is determined by LS measurements, the magnitude
actually obtained, which usually is represented by (s2> or <s2>z, is the z-average
of the values of R? for all the chains contained in the sample. This average can
be computed as (1):
2
<52>Z = ——L z wiMiR? = Mi (2)
M LM,

where w; represent the weight fraction of molecules having molecular weight Mi and
the sums expand over all the molecular sizes contained in the sample.

If a SEC chromatogram of this sample is available, and the calibration function

2
log M=A +AV+AV + ... (3)
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has been previously determined so that the Aj coefficients are known, any average
of <sz> can be calculated by numerical integration of this chromatogram. Thus, for

instance, weight and z averages are given by:

> = ) wR> = @? } 0 M (4)
w 11 » 1 1
i=1
-1

m m

> = Q2 } oMt } oM. (5)
4 » 11 - 1 1
i=1 i=1

where it was assumed that the integration is performed by dividing the
chromatogram in m slices and representing by hi and Vi the height and elution
volume of the i-th slice so that its weight fraction is w, = hi/Zhi and its
molecular weight Mi can be computed by substitution of Vi into eq. 3.

The Q and q coefficients appearing on eg. 1 can be calculated with the same

procedure previously used to determine the Mark-Houwink parameters of the

viscometric equation [n] KM® (5,8-13). Thus, assuming that experimental values
of <52>Z for n fractions of the polymer have been measured by LS, the root mean
square relative deviation o between theoretical values computed according to eq.

5 and those experimentally determined can be written as:

n <52>Z(ca1) 2 1172

c_= —> l- — (6)
S
n

2
{s >Z(exp)

Imposing on the deviation o the condition of minimum with respect to the two

ad justable parameters appearing on eq. I, i.e.
[6(0‘5)/6 Ql = [6(0‘8)/5 ql =0 (7

two equations are obtained that can be solved by any numerical procedure (14) to
provide the values of Q and q giving the best fit between experimental and

theoretical results of <sz>z.

ANALYSIS OF PBNP
The numerical method explained above was employed for the analysis of a sample of
PBNP whose synthesis and characterization have been reported elsewhere (5). In

brief, the sample was obtained by thermal polymerization of the cyclic trimer
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[NP(CIZ)]3 followed by a nucleophilic substitution of chlorine atoms by
2-naphthoxi groups. Fractional precipitation of the sample provided seven
fractions that were characterized by SEC, LS and VIS measurements performed in THF
solutions at 25°C. A 0.1 wt% of tetra{n-butylammomium)bromide was added to the THF
used as eluent for SEC experiments in order to obtain reproducible chromatograms
(15) that are shown in Fig. 1.

All the pertinent data are summarized in table I in which columns one through
seven were taken from reference 5, while the two last columns contains data
calculated in the present work. Thus, second and third columns represent data
experimentally obtained by LS. The fourth column contains the calculated values of
polydispersity ratios. Columns five to seven summarize the viscometric data, i.e.
experimental results of intrinsic viscosities and calculated values Mv and end to
end distance.

TABLE 1
Results for PBNP. Experimental data measured in THF solutions at 25°c.
Molecular weights in 104g/mol. Intrinsic viscosities in dL/g. Dimensions in nm

SEC calibration function: log M = 14,93 - 2,54 V + 0.16 V2

Fr. Mw <s2>;/2 [n] Mv <l_2>1/2 <S2>;/2 <s2>v1V/2
1 139.9 47.8 3.1 0.72 112.9 68.7 43.2 30.6
2 119.6 39.8 3.4 0.47 87.8 55.0 42.2 28.3
3 53.8 30.8 2.4 0.38 52.3 43.2 32.1 24 .6
4 49 .6 31.1 2.6 0.29 45.2 37.6 31.9 23.5
5 42.0 25.0 1.8 0.25 28.7 30.8 25.1 20.8
6 21.4 24.17 1.5 0.18 20.3 24.4 22.1 18.8
7 9.8 16.3 1.2 0.12 9.5 16.4 17.0 15.2

Application of the numerical procedure to the data collected in Table I and the
SEC chromatograms represented in Fig. 1 gives the following scaling law between
radius of gyration and molecular weights of ideally monodisperse fractions:

<s?>1/2 = 0.557 M?'Zg with o, = 0.12 (8)

This scaling law is graphically represented by the solid line of Fig. 2 while the

172

filled circles on this Fig. show the values of (<52>Z) computed for the seven

fractions according to eq. 5 as function of the experimental Mw' The open circles

2>Z)1/2 versus Mw’ both magnitudes being

indicate the experimental values of (s
obtained by LS. Finally, the broken line shows the least squares fitting of

experimental data. It is important to notice that the solid line on Fig. 2 is not



473

1.7
24|
1
- 1.6 4
—
g
S ]
18| &
:,"L 1.5 -
el 2
. |
1.4
Bizk
= ]
% 5]
6_ <
1.2 4
0 1.1
3 45

Fig.1. SEC chromatograms for the seven Fig.2. Radius of gyration as function of
fractions of PBNP. molecular weights. See text for details.

a least squares fitting of the filled circles, instead it represents a scaling law
for magnitudes corresponding to ideally monodisperse samples. The goodness of this
scaling law can be judged by comparing open and filled circles that represent,
respectively, experimental and theoretical values obtained for actual polydisperse
fractions. As Fig. 2 indicates, when experimental magnitudes are directly employed
in the fitting, the use of different averages for radius of gyration and molecular
weights produce an overestimation of the slope.

Radius of gyration determined by LS are frequently converted into end to end

distances <r2> by the relationship <r2> ~ 6<sz> and compared with the results

)/ M)/ ((*) /M),

45 50 55 6.0 85 ) 50 —, 100
Log M 107 M

Fig.3. Ratio between end to end distancesFig.4. Ratio between LS and VIS magnitudes
and molecular weights as function of M. as function of M.
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obtained by VIS. This comparison is shown in Fig. 3 that represents the values of

Log(<r2>/M) versus Log(M). The open circles indicate the viscometric results, i.e.

the dimensions were computed with the Flory-Fox equation ['n]MV = <I><r2>3/2 and

values of Mv were used for the horizontal axis. Least squares fitting of these

data, represented by the dot line, gives <r2>/M = 5.90 10_4 MO'13

another form, <r2> ~ Ml'l:3 which indicates a normal behavior of a random coil in a

, or written in

good solvent (2,16). Filled circles represent weight averages obtained by using
eq. 4 to compute <52>w and experimental values of Mw for the evaluation of <r‘2>/MW

= 6<SZ>W/MW whose logarithm is represented versus Log(M_). The least square

fitting is represented by the solid line and gives <r‘2> ~ K/IVO'SZ. The discrepancy
between viscosity and weight averages is more clearly shown in Fig. 4 where the
ratio y = [<r‘2>/M]W/[<r2>/M]V is plotted against the molecular weight. The open
circles represent values of y versus Log(Mv) while filled circles were drawn using
Log(Mw) in the horizontal axis. However, the differences between both kind of
representations are rather minor and the solid line indicates the fitting of all
the points to the power function ¥ = 6.06 103 M_0'62.

The behavior represented in Figs. 3 and 4 can be easily explained by assuming that
intermolecular aggregates are formed in the solution. The presence of these
aggregates do not perturb the viscosity measurements but leads to overestimations
on the radius of gyration determined by LS that become larger with decreasing
molecular size. For this reason, the extrapolation to M -» O in order to evaluate
unperturbed dimensions is good when performed with VIS results and rather poor
when obtained from LS values. Moreover, the differences in characteristic ratios
Cn = <1~2>0/n£2 obtained with this extrapolation are much larger than the
differences in perturbed dimensions actually measured for most of the fractions,

specially for those of higher molecular weight.
Acknowledgment: This work was supported by the DGICYT through grant PB88-152.

REFERENCES

1. Huglin M. B. (Ed.), Light Scattering from Polymer Solutions, Academic,
London, 1972.

2. De Gennes P. G., Scaling Concepls in Polymer Physics, Cornell University

Press, Ithaca, 1979

Bravo J., Tarazona M. P., Saiz E. (1992), Polymer Com., 33: 000.

Andrady A. L., Mark J. E. (1981), Eur. Polym. J., 17: 323

Bravo J., Tarazona M. P., Saiz E., Macromolecules, Submitted

Pezzin G., Lora S., Busulini L. (1981), Polymer Bul., 5: 543

o v s L



10.
11.

12.

13.

14.

15.

16.

475

Huglin M. B., Radwan M. A. (1991), Polymer, 32: 1293.

Bravo J., Tarazona M. P., Saiz E. (1991), Macromolecules, 24: 4089.

Tarazona M. P., Bravo J., Rodrigo M. M., Saiz E. (1991), Polymer Bul., 26: 465
McCrackin F. L. (1977), J. Appl. Polym. Sci., 21:191.

Barrales-Rienda J. M., Romero-Galicia C., Horta A. (1983), Macromolecules,
16: 932.

Barrales-Rienda J. M., Galera-Gémez P. A., Horta A., Saiz E. (1985),
Macromolecules, 18: 2572.

Horta A., Saiz E., Barrales~Rienda J. M, Galera-Gémez P. A. (1986), Polymer,
27: 139.

Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T., Numerical
Recipes. The Art of Scientific Computing. Cambridge University Press,
Cambridge, 1972.

Neilson R. H., Hani R., Wisian Neilson P., Meister J. S., Roy A., Hagnauer G.
L. (1987), Macromolecules, 20: 910

Flory P. J., Principles of Polymer Science, Cornell University Press, Ithaca,
1979

Accepted August 12, 1992 C



